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APPENDIX A

SENSITIVITY ANALYSIS: HOW DO WE KNOW WHAT’S IMPORTANT?

A.0 INTRODUCTION

Sensitivity analysis, as it is applied to risk assessment, is any systematic, common sense
technique used to understand how risk estimates and, in particular, risk-based decisions, are dependent on
variability and uncertainty in the factors contributing to risk.  In short, sensitivity analysis identifies what
is “driving” the risk estimates.  It is used in both point estimate and probabilistic approaches to identify
and rank important sources of variability as well as important sources of uncertainty.  The quantitative
information provided by sensitivity analysis is important for guiding the complexity of the analysis and
communicating important results (see Chapter 6).  As such, sensitivity analysis plays a central role in the
tiered process for PRA (see Chapter 2).  This Appendix focuses on a set of graphical and statistical
techniques that can be used to determine which variables in the risk model contribute most to the
variation in estimates of risk.  This variation in risk could represent variability, uncertainty, or both,
depending on the type of risk model and characterization of input variables. 

There is a wide array of analytical methods that may be referred to as sensitivity analysis, some
of which are very simple and intuitive.  For example, a risk assessor may have two comparable studies
from which to estimate a reasonable maximum exposure (RME) for childhood soil ingestion.  One
approach to evaluating this uncertainty would be to calculate the corresponding RME risk twice, each
time using a different plausible point estimate for soil ingestion rate.  Similarly, in a probabilistic model,
there may be uncertainty regarding the choice of a probability distribution.  For example, lognormal and
gamma distributions may be equally plausible for characterizing variability in an input variable.  A
simple exploratory approach would be to run separate Monte Carlo simulations with each distribution in
order to determine the effect that this particular source of uncertainty may have on risk estimates within
the RME range (90th to 99.9th percentile, see Chapter 1). 

 Sensitivity analysis can also involve more complex mathematical and statistical techniques such
as correlation and regression analysis to determine which factors in a risk model contribute most to the
variance in the risk estimate.  The complexity generally stems from the fact that multiple sources of
variability and uncertainty are influencing a risk estimate at the same time, and sources may not act
independently.  An input variable contributes significantly to the output risk distribution if it is both
highly variable and the variability propagates through the algebraic risk equation to the model output
(i.e., risk).  Changes to the distribution of a variable with a high sensitivity could have a profound impact
on the risk estimate, whereas even large changes to the distribution of a low sensitivity variable may have
a minimal impact on the final result.  Information from sensitivity analysis can be important when trying
to determine where to focus additional resources.  The choice of technique(s) should be determined by
the information needs for risk management decision making.

This appendix presents guidance on both practical decision making and theoretical concepts
associated with the sensitivity analysis that are commonly applied in risk assessment.  An overview of the
type of information provided by sensitivity analysis is presented first, followed by guidance on how to
decide what method to use in each of the tiers.  A straightforward example of applications of Tier 1 and
Tier 2 sensitivity analysis methods is shown, followed by a more detailed discussion of the theory and
equations associated with the different methods.
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EXHIBIT A-1

DEFINITIONS FOR APPENDIX A

Continuous Variables - A random variable that can assume any value within an interval of real numbers (e.g., body
weight).

Correlation - A quantitative expression of the statistical association between two variables; usually represented by the
Pearson correlation coefficient for linear models, and the Spearman rank correlation coefficient (see below) for
nonlinear models.

Discrete Variables - A random variable that can assume any value within a finite set of values (e.g., number of visits to a
site in one year) or at most a countably infinite set of values, meaning that you can count observations, but there is no
defined upper limit.  An example of countably infinite would be the number of dust particles in a volume of air (a
Poisson distribution), whereas uncountably infinite would be the number of points in a line segment.

Local Sensitivity Analysis - Evaluation of the model sensitivity at some nominal points within the range of values of input
variable(s).

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - The process of repeatedly sampling from probability
distributions to derive a distribution of outcomes.  MCA is one of several techniques that may be used in PRA.

Multiple Regression Analysis - A statistical method that describes the extent, direction, and strength of the relationship
between several (usually continuous) independent variables (e.g., exposure duration, ingestion rate) and a single
continuous dependent variable (e.g., risk).

Nonparametric Tests - Statistical tests that do not require assumptions about the form of the population probability
distribution.

Range Sensitivity Analysis - Evaluation of the model sensitivity across the entire range of values of the input variable(s).
Rank - If a set of values is sorted in ascending order (smallest to largest), the rank corresponds to the relative position of a

number in the sequence.  For example, the set {7, 5, 9, 12} when sorted gives the following sequence {5, 7, 9, 12}
with ranks ranging from 1 to 4 (i.e., rank of 5 is 1, rank of 7 is 2, rank of 9 is 3, and rank of 12 is 4). 

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the values
of the model’s input(s).  Sensitivity analysis attempts to provide a ranking of the model inputs based on their relative
contributions to model output variability and uncertainty.  Common metrics of sensitivity include:
< Pearson Correlation Coefficient - A statistic r that measures the strength and direction of linear association

between the values of two quantitative variables.  The square of the coefficient (r2) is the fraction of the variance
of one variable that is explained by least-squares regression on the other variable, also called the coefficient of
determination..

< Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called elasticity.
< Sensitivity Score - A sensitivity ratio that is weighted by some characteristic of the input variable (e.g., variance,

coefficient of variation, range).
< Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic r that measures

the strength and direction of association between the ranks of the values (not the values themselves) of two
quantitative variables.  See Pearson (above) for r2.
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EXHIBIT A-2

UTILITY OF SENSITIVITY ANA LYS IS

C Decision making with the tiered approach-

e.g., After quantifying parameter uncertainty,

we are 95 percent confident that the RME risk

is below the risk level of concern— no further

analysis is needed.  Also—selection of a  beta

distribution over a lognormal distribution for

ingestion rate changes the 95th percentile of

the risk distribution by a factor of 10—further

evaluation may be needed.

C Resource allocation - e.g., Two of the 10

exposure variables contribute 90 percent of

the variability in the risk estimate.

C Risk communication - e.g., For input

variable X, if we were to use a distribution

based on site-specific data instead of a

national survey, we would expect a minimal

change in the RME risk estimate.

A.1.0 UTILITY OF SENSITIVITY ANALYSIS

As highlighted in Exhibit A-2, sensitivity
analysis can provide valuable information for both
risk assessors and risk management decision makers
throughout the tiered process for PRA.  By
highlighting important sources of variability and
uncertainty in the risk assessment, sensitivity analysis
is generally an important component of the overall
uncertainty analysis.  For example, methods that
quantify parameter uncertainty and model uncertainty
may yield different estimates of the RME risk.  This
information can be used to guide the tiered process by
supporting decisions to conduct additional analyses or
prioritize resource allocations for additional data
collection efforts.  Results of sensitivity analysis can
also facilitate the risk communication process by
focusing discussions on the important features of the
risk assessment (e.g., constraints of available data,
state of knowledge, significant scientific issues, and
significant policy choices that were made when
alternative interpretations of data existed). 

Decision Making with the Tiered Approach

In general, the type of information provided by a sensitivity analysis will vary with each tier of a
PRA.  Table A-1 provides an overview of the methods that may be applied in each tier based on the type
of information needed.  In Tier 1, sensitivity analysis typically involves changing one or more input
variables or assumptions and evaluating the corresponding changes in the risk estimates.  Ideally, the
results for Tier 1 would be useful in deciding which exposure pathways, variables, and assumptions are
carried forward for further consideration in subsequent tiers of analysis.  By identifying the variables that
are most important in determining risk, one can also decide whether point estimates, rather than
probability distribution functions (PDFs), can be used with little consequence to the model output.  This
information is important not only for designing 1-D MCA models of variability, but also for designing
more complex analyses of uncertainty discussed in Appendix D (e.g., 2-D MCA models, geostatistical
analysis, Bayesian analysis).  Section A.2.2 provides an overview of the Tier 1 methods and some
insights regarding their limitations.  Methods associated with Monte Carlo simulations used in Tiers 2
and 3 can take advantage of the ability to vary multiple inputs simultaneously and account for
correlations.  Sections A.2.3 and A.3 provide an overview of the sensitivity analysis methods that can be
applied in a probabilistic analysis.
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Table A-1.  Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 of a PRA.

Tier Goal SA Method(s) What to Look For Rationale

1 Quantify contributions of

each exposure pathway

to risk, identify major

and minor pathways

Calculate % of total risk

from each exposure

pathway

Exposure pathways that

contribute a very small

percentage (e.g., < 5%) to

total risk

Good preliminary step in Tier 1 for reducing the number of

exposure variables to focus on in subsequent tiers. 

Exposure variables that

appear in multiple

exposure pathways

Risk estimates are likely to be more sensitive to variables that

appear in multiple exposure pathways.

1 Identify the form of the

dose equation for key

pathways 

Inspection Equation is multiplicative

or additive

SR values can be determined with minimal effort (see

Table A-3).  For multiplicative equations, SR=1.0 for all

variables in the numerator, and SR is a function of the percent

change for a ll variables in the denominator. 

Equation contains

variables with exponents

(e.g., powers, square

roots)

Output is likely to be more sensitive to variables with

exponents greater than 1.0.

1 Quantify contributions of

each exposure variable to

total risk, identify major

and minor variables

Sensitivity Ratio (SR),

unweighted

SR = 1.0, or SR is the

same for multiple

variables

It’s likely that this is a multiplicative equation (see above), and

the SR approach will not be effective at discriminating among

relative contributions.  Explore sensitivity further with other

methods.

SR � 1.0 SR may vary as a function of the % change in the input

variable.  In this situation, it can be informative to explore

small deviations (± 5%) and large deviations (min, max) in the

input variables.  

SR < 1.0 Implies an inverse relationship between the input and output

variables (e.g., inputs in the denominator of a risk equation).
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SR=0 Variable probably appears in both the numerator and

denominator and, therefore , cancels out of the  risk equation. 

Examples include exposure duration (ED) in noncancer risk

equations, and body weight (BW) if ingestion rate is expressed

as a function of body weight. 

1 (cont’d) Quantify

contributions of each

exposure variable to total

risk

Sensitivity Ratio (SR),

weighted—also called

Sensitivity Score

Differences in SR based

on the weighting factor

A more informative approach than unweighted SR value for

those variables that have sufficient information to define a

weighting factor (e.g., coefficient of variation or range).

2 Quantify relative

contributions of exposure

pathways to risk

1-D MCA for variability

or uncertainty, with

outputs specifying %

contribution of exposure

pathways

Compare mean with

high- and low-end

percentiles of %

contribution to risk

The % contribution of each exposure pathway will vary as a

function of the variability (or uncertainty) in the inputs;

exposure pathways that appear to be relatively minor

contributors on average, or from Tier 1 assessment, may in fact

be a major contributor to risk under certain exposure scenarios. 

The likelihood that a pathway is nonnegligible (e.g., > 5%) can

be useful information for risk managers.

2 Quantify relative

contributions of exposure

variables to risk

1-D MCA for variability

or uncertainty,

Graphical analysis—

scatterp lots of inputs

and output

Nonlinear relationship Easy and intuitive approach that may identify relationships that

other methods could miss.  May suggest transformations of

input or output variables (e.g., logarithms, power

transformations) that would improve correlation and regression

analyses.

1-D MCA, Correlation

Analysis using Pearson

and /or Spearman Rank 

Very high or low

correlation coefficients

Differences between

relative rankings based

on Pearson and Spearman

Easy to implement with commercial software; rank orders the

variables based on the average contribution to variance. 

Differences in magnitude of coefficients are expected between

Pearson and Spearman rank approaches, but relative order of

importance is likely to be the same.
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1-D MCA, Multiple

Linear Regression

Analysis (e.g., stepwise)

Very high or low

regression coefficients

R2 and adjusted R2 for

total model

Easy to implement with commercial software; gives

contribution to reduction in residual sum of squares (RSS)

For risk equations with large sets of input variab les, a small

subset of inputs may be able to explain the majority of the

variance.

2 Quantify relative

contributions of exposure

variables to RME risk

range

1-D MCA; same as

previous step, but for

subset of risk

distribution (e.g., > 90 th

percentile)

Difference in relative

contributions for entire

risk distribution and the

RME range of the risk

distribution

Variables may contribute d ifferently to the high-end of the risk

distribution, especially if the input variab les are highly skewed. 

This situation would warrant a closer look at the assumptions

regarding the estimate of the variance, differences in the upper

tail (high-end percentiles) for alternative choices of probability

distributions, and assumptions associated with truncation

limits.

1-D M CA, Goodness-

of-fit, K-S or Chi-

square; Sort output as

above; perform GoF on

input distribution only,

comparing subset of

input values

corresponding with

high-end risk to subset

corresponding with

remainder of risk

distribution 

GoF result—rejection of

null (distributions are the

same) suggests the

variable may be an

important contributing

factor to the RM E risk

estimate

A second method for identifying variables that contribute

differently at the high-end of the risk distribution.  GoF test

results should be interpreted with caution because a Monte

Carlo simulation will generally yield large sample sizes (e .g.,

n=5,000 iterations), which is more likely to result in a positive

GoF test (i.e., rejection of the null).

3 Quantify relative

contributions of exposure

pathways and variables

to variability and

uncertainty in risk

2-D MCA, same

sensitivity analysis

methods as Tier 2

For variability, evaluate

inner loop values; for

parameter uncertainty,

evaluate outer loop

values

The results of a sensitivity analysis depend on the question that

is being asked about the risk estimate— are we interested  in

variability or uncertainty?  T he major sources of variability in

risk may point to a different set of input variables than the

major sources of uncertainty in risk.
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Resource Allocation

Decisions regarding allocation of future resources and data collection efforts to reduce lack of
knowledge generally should take into consideration the most influential input factors in the model, and
the cost of gaining new information about the factors.  Sensitivity analysis is a key feature of determining
the expected value of information (EVOI) (see Appendix D).  Once a sensitivity analysis is used to
identify an input variable as being important, the source of its variability generally should be determined. 
If an input factor has a significant uncertainty component, further research and/or data collection can be
conducted to reduce this uncertainty.  Reducing major sources of uncertainty, such as the most relevant
probability model for variability or the parameter estimates for the model, will generally improve
confidence in the model output, such as the estimated 95th percentile of the risk distribution.  An input
factor may contribute little to the variability in risk, but greatly to the uncertainty in risk (e.g., the
concentration term).  Likewise, a variable may contribute greatly to the variability in risk, but, because
the data are from a well characterized population, the uncertainty is relatively low (e.g., adult tap water
ingestion rate).

An example of the output from a 2-D MCA of uncertainty and variability (see Appendix D) is
shown in Figure A-1.  Assume for this example that the decision makers choose the 95th percentile risk as
the RME risk, and that a sensitivity analysis is run to identify and quantitatively rank the important
source(s) of parameter uncertainty.  The bar chart (top panel) in Figure A-1 indicates that the mean soil
concentration contributes most to the uncertainty in the 95th percentile risk estimate.  In addition, the
mean exposure frequency is a greater source of uncertainty than the standard deviation exposure
frequency.  Since both the sample size and variance impact the magnitude of the confidence limits for an
arithmetic mean soil concentration, one way to reduce the confidence limits (i.e., the uncertainty) would
be to collect additional soil samples.  As shown by the box-and-whisker plots (bottom panel) in
Figure A-1, increasing the sample size (from n=25 to n=50) reduced the 90% confidence limits for the
95th percentile risk to below 1E-05, assuming the additional observations support the same estimate of the
mean and standard deviation as the original sample.

Although the uncertainty in a risk estimate can be reduced by further data collection if the
sensitive input distribution represents uncertainty, this is not necessarily true for input distributions that
represent variability.  For example, variability in the distribution of body weights can be better
characterized with additional data, but the coefficient of variation (i.e., standard deviation divided by the
mean) will not in general be reduced.

Risk Communication

Even if additional data are not collected to reduce uncertainty, identifying the exposure factors
that contribute most to risk or hazard may be useful for risk communication.  For example, assume that
the input for exposure frequency has the strongest effect on the risk estimate for a future recreational
open space.  Further examination of this exposure variable reveals that the wide spread (i.e., variance) of
the PDF is a result of multiple users (e.g., mountain bikers, hikers, individuals who bring picnics, etc.) of
the open space who may spend very different amounts of time recreating.  As a result of this analysis, the
decision makers and community may decide to focus remediation efforts on protecting the high-risk
subpopulation that is expected to spend the most time in the open space.

After determining which contaminants, media, and exposure pathways to carry into a PRA,
numerical experiments generally should be performed to determine the sensitivity of the output to various
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distributions and parameter estimates that may be supported by the available information.  Variables that
do not strongly affect the risk estimates may be characterized with point estimates without significantly
altering the risk estimates.  This guidance document does not recommend a quantitative metric or rule of
thumb for determining when a variable strongly affects the output; this would generally be determined on
a case-by-case basis.  A qualitative or quantitative analysis may be used depending on the complexity of
the risk assessment at this point.  For example, incidental ingestion of soil by children is often an
influential factor in determining risk from soil, a factor recognized by risk assessors.  This recognition is
a de facto informal sensitivity analysis.  An array of quantitative techniques is also available, ranging
from something as simple as comparing the range of possible values (i.e., maximum-minimum) for each
variable, to more complex statistical methods such as multiple regression analysis.  Several of these
methods are discussed in more detail in this appendix.

Often, sufficient information is available to characterize a PDF for a minor variable without
significant effort.  This situation raises a question of whether the variable should be characterized with a
point estimate or a PDF.  The results of sensitivity analysis should be viewed as supplemental
information, rather than an absolute rule for determining when to use a PDF.  There are at least two
issues to consider related to risk communication.  First, the risk communication process may be
facilitated by narrowing the focus of the evaluation to the key factors.  More attention can be given to the
discussion of key variables quantified by PDFs by describing the minor variables with point estimates. 
However, the decision to use a point estimate should be balanced by considering a second issue regarding
perception and trust.  There may be a concern that by reducing sources of variability to point estimates,
there would be a reduction (however small) in the variability in risk, especially if multiple small sources
of variability add up to a nonnegligible contribution.  To address these concerns, it may be prudent to
leave the PDFs in the calculations despite the results of a sensitivity analysis.
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Figure A-1.  Results of 2-D MCA in which parameters of input distributions describing variability are assumed

to be random values.  Results of a sensitivity analysis (top graph) suggest that more than 50%  of the uncertainty

in the 95th percentile of the  risk distribution is due to uncertainty in the arithmetic mean concentration in so il. 

The bottom graph gives box-and-whisker plots for the 95 th percentile of the  risk distribution associated with

Monte Carlo simulations using different sample sizes (n=25 and n=50).  For this example, the whiskers represent

the 5th and 95th percentiles of the distribution for uncertainty, otherwise described as the 90% confidence interval

(CI).  For n=25, the 90% CI is [1.0E-06, 2.2E-05]; for n=50, the 90% CI is reduced to [1.2E-06, 9.5E-06]. 

While increasing n did not change the 50th percentile of the uncertainty distribution, it did provide greater

confidence that the 95th percentile risk is below 1x10-5.
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EXHIBIT A-3

SOME KEY INDICES OF SENSITIVITY ANALYSIS 

C Relative contribution of exposure pathways

C Inspection of risk equation

C Sensitivity ratios (i.e., elasticity)

C Sensitivity scores (i.e., weighted sensitivity

ratios)

C Graphical techniques with results of M onte

Carlo simulations (e.g., scatter plots)

C Correlation coefficient (or coefficient of

determination, r2) (e.g., Pearson product

moment, Spearman rank)

C Normalized multiple regression coefficient

C Goodness-of-fit test for subsets of the risk

distribution

A.2.0 COMMON METHODS OF SENSITIVITY ANALYSIS

Of the numerous approaches to sensitivity
analysis that are available (see Exhibit A-3), no single
approach will serve as the best analysis for all
modeling efforts.  Often, it will make sense to apply
multiple approaches.  The best choice(s) for a
particular situation will depend on a number of
factors, including the nature and complexity of the
model and the resources available.  A brief
description of the more common approaches is
provided in this appendix.  Sensitivity analysis need
not be limited to the methods discussed in this
guidance, which focuses on the more common
approaches.  A large body of scientific literature on
various other methods is available (e.g., Iman et al.,
1988, 1991; Morgan and Henrion, 1990; Saltelli and
Marivort, 1990; Rose et al., 1991; Merz, Small, and
Fischbeck, 1992; Shevenell and Hoffman 1993;
Hamby, 1994; U.S. EPA, 1997).  Any method used,
however, generally should be documented clearly and
concisely.  This includes providing all information
needed by a third party to repeat the procedure and
corroborate the results.  Relevant information might include the following: exposure pathways and
equations; a table with the input variables with point estimates, probability distributions and parameters;
and tables or graphs giving the results of the sensitivity analysis and description of the method used.  A
hypothetical example is presented in this appendix to illustrate how to apply and present the results of
selected approaches to sensitivity analysis.

Hypothetical Example of a Noncancer Risk Equation

To illustrate the application of sensitivity analysis concepts to Tier 1 and Tier 2, a hypothetical
risk assessment is presented based on the general equation for Hazard Index (HI) given by Equation A-1. 
Note that HI is equal to the sum of the chemical-specific Hazard Quotient (HQ) values, so technically,
this example reflects exposures from a single chemical.

Equation A-1

The terms in Equation A-1 can be defined as follows: concentration in the ith exposure medium (Ci),
ingestion or inhalation rate of the ith exposure medium (Ii), absorption fraction of chemical in the ith

exposure medium (AFi ), exposure duration (ED), exposure frequency (EF), body weight (BW),
averaging time (AT=ED x 365 days/year), and reference dose (RfD).  
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For this example, HI is calculated as the sum of the exposures to adults from two exposure
pathways: tap water ingestion and soil ingestion.  Equation A-2 gives the equation for HI while
Table A-2 gives the inputs for a point estimate assessment and a probabilistic assessment of variability.  

Equation A-2

Table A-2.  Point estimates and probability distributions for input variables used in the hypothetical example of HI

associated with occupational exposure via water and soil ingestion. 

Input Variable

in Equation A-2

Point Estimate Probability Distribution
Units

CTE R M E Type Parameters

Concentration in Water (C_w) 40 40 point estimate 40 mg/L

Tap W ater Ingestion Rate (I_w) 1.3 2.0 lognormal1 [1.3, 0.75] L/day

Absorption Fraction Water (AF_w) 0.30 0.50 beta2 [2.0, 3.0] unitless

Concentration in Soil (C_s) 90 90 point estimate 90 mg/kg

Soil Ingestion Rate (I_s) 0.05 0.10 uniform [0, 0.13] kg/day

Absorption Fraction Soil (AF_s) 0.10 0.30 beta2 [1.22 , 4.89] unitless

Exposure Frequency (EF) 250 350 triangular [180, 250, 350] days/yr

Exposure Duration (ED) 1 7 empirical3 see below years

Body Weight (BW) 75 75 lognormal1 [74.6, 12.2] kg

Averaging Time (AT) 365 2555 empirical4 ED x 365 days

RfD oral
5 0.5 0.5 point estimate 0.5 mg/kg-day

1Parameters of lognormal distribution are [arithmetic mean, standard deviation].
2Parameters of beta distribution are [alpha, beta], with range defined by min=0 and max=1.0.  Parameter conversions for
arithmetic mean and standard deviation are given in Table A-7.
3Parameters of empirical cumulative distribution function (ECDF) for ED ~ [min, max, {x}, {p}] = [0, 30, {0.08, 0.18, 0.30,
0.44, 0.61, 0.84, 1.17, 1.72, 3.1, 6.77, 14.15, 23.94}, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99}], where x is the
array of values and p is the array of corresponding cumulative probabilities.
4AT=ED x 365 for noncarcinogenic risks (Hazard Index).
5For simplicity, RfDoral is assumed to be applicable to the ingestion of the chemical in both water and soil.

A.2.1 TIER 1 APPROACHES

Approaches for sensitivity analysis in Tier 1 of a PRA are limited to calculations that are based
on changing point estimates.  They are generally easy to perform and to communicate.  As given by
Table A-1, goals for the sensitivity analysis in Tier 1 include quantifying the relative contributions of the
exposure pathways, identifying potential nonlinear relationships that may exist between input variables
and the risk estimate, and rank ordering the relative contribution of exposure variables to variability or
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uncertainty in the risk estimate.  This last goal may be the most difficult to achieve due to the limitations
associated with the point estimate methodology.  Methods are applied to the hypothetical example
presented above (Section A.2.0) in order to demonstrate the inherent limitations of the Tier 1 approaches
in some situations.

A.2.1.1 PERCENTAGE CONTRIBU TION  OF EXPOSURE PATHWAYS TO TOTAL RISK

For cancer and noncancer risk assessments central tendency exposure (CTE) and RME risk is
typically calculated as the sum of risks from multiple exposure pathways.  Risks may be dominated by
one or two exposure pathways, which can be determined through a simple calculation as shown below. 
The relative contributions of exposure pathways are likely to differ between the CTE risk and RME risk.

The point estimates in Table A-2 were applied to Equation A-2 to obtain CTE and RME point
estimates of HI.  Table A-3 gives the percent contributions of soil ingestion and tap water ingestion using
Equations A-3 and A-4.  Tap water ingestion contributes at least 90% to HI, and the total HI is greater
than 1.0 for both CTE and RME point estimates.  If 1.0 is the level of concern for HI, and a decision was
made to explore variability and uncertainty in a probabilistic analysis, this result might support
prioritizing the evaluation of data and assumptions associated with the tap water ingestion pathway. 

Table A-3.  Percent contribution of exposure pathways to HI for the example in Section A.2.

Exposure 

Pathway

CTE Point Estimate RM E Point Estimate

HI  % of total2 HI % of total

Soil Ingestion 0.02 6 % 0.15 13 %

Tap Water Ingestion 0.28 94 % 1.02 87 %

 Total 0.30 100 % 1.17 100 %

1Equation A-3:  HItotal = HIsoil + HIwater
2Example using Equation A-4: % of total RME HI for soil ingestion = (0.15 / 1.17) x 100% = 13%.

Equation A-3

Equation A-4

In this example, the choice of CTE and RME point estimates reflects an effort to explore
variability in HI, rather than uncertainty.  Even if the concentration terms represent the upper confidence
limit on the mean (e.g., 95% UCL), the point estimates chosen to represent the CTE and RME for other
exposure variables reflect assumptions about the variability in exposures.  There is uncertainty that the
choices actually represent the central tendency and reasonable maximum exposures.  To explore this
uncertainty, alternative choices for CTE and RME may have been selected.  This type of exploration of
uncertainty in Tier 1 may also be viewed as a form of sensitivity analysis.  The percent contribution of
exposure pathways could be recalculated, and the sensitivity ratio approaches discussed below may also
be applied.
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A.2.1.2 INSPECTION  OF RISK EQUATION

For many Superfund risk assessments, risk equations can be characterized as relatively simple
algebraic expressions involving addition, multiplication, and division of input variables.  The term
“product-quotient” model is often applied to describe equations such as Equation A-1.  For these risk
equations, the input variables that are likely to contribute most to the variability or uncertainty in risk can
be identified by inspection.  In addition, inspection of the risk equation can help to identify which
sensitivity analysis methods are unlikely to reveal the relative importance of the input variables.  This
concept is illustrated by comparing the results of the sensitivity ratio approach (Section A.2.1.3) with the
Tier 2 approaches (Section A.2.2) applied to the hypothetical example in Section A.2.0.

Some risk equations can be more complex, involving conditional probabilities, or expressions
with exponents (e.g., y=x2, or y=exp(1- x)).  In these cases, the Tier 1 sensitivity analysis methods may
be effective and highlighting the variables that contribute most to the risk estimates. 

A.2.1.3 SENSITIVITY RATIO (SR)

A method of sensitivity analysis applied in many different models in science, engineering, and
economics is the Sensitivity Ratio (SR), otherwise know as the elasticity equation.  The approach is easy
to understand and apply.  The ratio is equal to the percentage change in output (e.g., risk) divided by the
percentage change in input for a specific input variable, as shown in Equation A-5. 

Equation A-5

where, Y1 = the baseline value of the output variable using baseline values of input variables
Y2 = the value of the output variable after changing the value of one input variable
X1 = the baseline point estimate for an input variable
X2 = the value of the input variable after changing X1

Risk estimates are considered most sensitive to input variables that yield the highest absolute value for
SR.  The basis for this equation can be understood by examining the fundamental concepts associated
with partial derivatives (see Section A.3.2).  In fact, SR is equivalent to the normalized partial derivative
(see Equation A-12).  

Sensitivity ratios can generally be grouped into two categories—local SR and range SR.  For the
local SR method, an input variable is varied by a small amount, usually ±5% of the nominal (default)
point estimate, and the corresponding change in the model output is observed.  For the range sensitivity
ratio method, an input variable is varied across the entire range (plausible minimum and maximum
values).  Usually, the results of local and range SR calculations are the same.  When the results differ, the
risk assessor can conclude that different exposure variables are driving risk near the high-end (i.e.,
extreme tails of the risk distribution) than at the central tendency region. 
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Demonstration of the Limitations of SR Approach

Although SR is a relatively simple and intuitive approach, it does not provide useful information
under certain conditions for the more common risk equations.  To demonstrate the limitations, first
Equation A-5 is applied to the hypothetical example given in Section A.2.0.  The results are then
extended to a more general case of any of the more common risk models that involve the products of
terms (i.e., multiplicative model) or the sum of terms (i.e., additive model).

Table A-4 presents an example of the local SR and range SR approach applied to the set of RME
inputs given in Table A-2.  For the local SR, each input was increased by 5% (i.e., )=+5%), while for the
range SR, each input was increased by 50%.  Inputs for exposure frequency were truncated at the
maximum value of 365 days/year, which represents a 4.29% increase over the nominal RME value of
350 days/year.  

Table A-4.  Results of the Sensitivity Ratio  (SR) approach applied to the hypothetical example of RME HI given in

Section A.2.0.  Includes both  soil ingestion and tap water ingestion pathways.

Input Variable , X

in Equation A-21

Nominal 

R M E

value (X1)

Local SR 

() =  +  5.0%)

Range SR 

() = + 50%  or max)

X2

) in HI

(%)
SR X2

) in HI

(%)
SR

Tap Water Ingestion Rate, I_w

(L/day)

2.0 2.1 4.35 0.87 3.0 43.5 0.87

Absorption Fraction Water,

AF_w (unitless)

0.50 0.525 4.35 0.87 0.75 43.5 0.87

Soil Ingestion Rate, I_s (kg/day) 0.100 0.105 0.65 0.13 0.150 6.5 0.13

Absorption Fraction Soil, AF_s

(unitless)

0.30 0.315 0.65 0.13 0.45 6.5 0.13

Exposure Frequency, EF 

(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW  (kg) 75 78.75 - 4.46 - 0.89 112 .5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time is
a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.

The following observations can be made from these results:
< In decreasing order of sensitivity:

Local SR () = 5%) rankings: EF > BW > I_w = AF_w > I_s = AF_s > ED 

Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< EF is the most sensitive variable with an SR value of 1.0.  Since EF is a variable in the numerator
for both exposure pathways, this result is to be expected, as will be explained below.
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< ED yields an SR=0, suggesting it does not contribute to the HI estimate.  Upon closer inspection
of the risk equation, it is apparent that ED occurs in the numerator of Equation A-2, as well as in
the denominator (AT=ED x 365).  Thus, ED effectively cancels out of the product quotient
model and does not effect the estimate of HI.

< BW, the only variable in the denominator of the risk equation, is also the only variable to yield a
different SR value when comparing the local and range SR approaches.  Thus, BW is the only
variable for which SR depends on the percent change in the input ()).

< BW is the only negative SR value, indicating that HI and BW are inversely related.  This is true
in general for any variable in the denominator of a product quotient model.

< For variables unique to the water ingestion pathway (I_w, AF_w), SR=0.87.  Similarly, for
variables unique to the soil ingestion pathway (I_s, AF_s), SR=0.13  These SR values are exactly
the same as the percent contributions of the tap water ingestion pathway and soil ingestion
pathway to HI (see Table A-3).

Since tap water ingestion is the dominant pathway (i.e., 87% of RME HI), a reasonable strategy
for the Tier 1 sensitivity ratio approach might be to limit the subsequent probabilistic analysis in Tier 2 to
the tap water ingestion pathway; so that input variables unique to the soil ingestion pathway would be
characterized by point estimates.  For this relatively simple example, this would mean that soil ingestion
rate (I_s) and absorption fraction from soil (AF_s) would be described by point estimates instead of
PDFs.  The question to address would then become—Of the exposure variables in the tap water ingestion
pathway, which ones contribute most to HI?  A sensitivity ratio approach was applied to the tap water
ingestion pathway to address this question.  The results are presented in Table A-5.

Table A-5.  Results of the Sensitivity Ratio  (SR) approach applied to the hypothetical example of RME HI given in

Section A.2.0.  Includes only  tap water ingestion pathway.

Input Variable , X

in Equation A-21

Nominal 

R M E

value (X1)

Local SR 

() =  +  5.0%)

Range SR 

() = + 50%  or max)

X2

) in HI

(%)
SR X2

) in HI

(%)
SR

Tap Water Ingestion Rate, I_w

(L/day)

2.0 2.1 5.0 1.00 3.0 50 1.00

Absorption Fraction Water,

AF_w (unitless)

0.50 0.525 5.0 1.00 0.75 50 1.00

Exposure Frequency, EF 

(days/yr)

350 3652 4.29 1.00 3652 4.29 1.00

Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00

Body Weight, BW  (kg) 75 78.75 - 4.46 - 0.89 112 .5 - 33.33 - 0.67

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time is
a function of exposure duration.  RfD is a fixed point estimate.
2Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.
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The following observations can be made from these results:

< In decreasing order of sensitivity:

Local SR () = 5%) rankings: I_w = AF_w = EF > BW > ED

Range SR () = 50%) rankings: I_w = AF_w = EF > BW > ED

< SR values for variables in the numerator (I_w, AF_w, and EF) are all equal to 1.0, so the SR
approach suggests that they contribute equally to the HI estimate.

< BW values are the same as in Table A-4.  They are negative, and the values change as a function
of the percent change in the nominal RME value ()).

Tables A-4 and A-5 suggest that the SR approach provides essentially the same information
about sensitivity as other Tier 1 methods.  Specifically, inspection of the risk equation reveals that ED
does not contribute to HI.  In addition, for pathway-specific variables in the numerator, like ingestion
rates and absorption fractions, SR values are equal to the percent contributions of the exposure pathways. 
This actually reflects the fact that each factor in the numerator of a multiplicative equation has an SR of
1.0.

The results of the SR approach applied to the example above can be generalized to all
multiplicative and additive risk equations, as discussed below.

Generalizing the Limitations of the SR Approach

In many cases, the general equation for SR (Equation A-5) will give values that can be
determined a priori, without doing many calculations.  To understand why this is true, it is useful to
simplify the algebraic expression given by Equation A-5.  Let ) equal the percentage change in the input
variable, X1.  For SR calculations, ) may be either positive or negative (e.g., ±5% for local SR; ±100%
for range SR), and the new value for the input variable (i.e., X2) is given by Equation A-6.

Equation A-6

Therefore, the denominator in Equation A-5 reduces to ):

and Equation A-5 reduces to Equation A-7: 

Equation A-7
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EXHIBIT A-4

CATEGORIES OF SOLUTIONS FOR SENSITIVITY RATIOS OF 

M ULTIPICATIVE OR ADDITIVE EQUATIONS 

Case 1 SR is a constant (e.g., 1.0).  SR is independent of the choice of nominal (default) values
for input variables and the choice of ).

Case 2 SR is a constant determined only by the nominal values for the input variables.  SR is
independent of the choice of ).

Case 3 SR is constant determined only by the choice of ).  SR is independent of the nominal
values for the input variables.

Case 4 SR is a function of both the nominal values for the input variables and the choice of ).

Case 5 SR is 0.  The variable does not contribute to the risk estimate.

Equation A-7 can be used to evaluate SR for different types of exposure models in which the
intake equation is generally expressed as a simple algebraic combination of input variables.  Solutions to
SR calculations for input variables in both multiplicative and additive equations are given in Table A-6. 
For any such risk equation, the solution will fall into one of the five categories given by Exhibit A-4.

Table A-6.  Examples of algebraic solutions to Sensitivity Ratio calculations for additive and multiplicative forms of

risk equations.1, 2  

Equation Type

(Output = Y, Inputs = A, B, C, D)
SRA = SRB = SRC = SRD =

1) Additive in 

     Numerator
NA3

2) Additive in 

    Denominator
1.0 NA

3) Multiplicative 

    in Numerator
1.0 1.0 NA

4) Multiplicative 

   in Denominator
1.0 NA

1Sensitivity Ratio for input variable A for an equation that is additive in the numerator: SRA=A / (A + B).
2)=% change in input variable.  For example, ) for C=[(C2 - C1)/C1] x 100%, where C1=the original point estimate and C2=the
modified point estimate.  Similarly, C2=C1 (1 + )).
3NA=not applicable because the variable is not in the equation.
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The following observations can be made for the four forms of the risk equation, based on one of the five
cases described in Exhibit A-4:

(1) Additive in Numerator

< Case 2: SR values for variables in the numerator depend exclusively on the nominal point
estimates for all variables in the numerator.  The values are independent of the choice of percent
change in the inputs ()). 

< Case 3: SR values for variables in the denominator depend exclusively on ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting
SR values.  Therefore, SR is somewhat arbitrary, especially for the range SR approach since
input variables may have different plausible minimum and maximum values.

(2) Additive in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 4: SR values for variables in the denominator are a function of both the nominal values of
variables in the denominator and ).

(3) Multiplicative in Numerator and (4) Multiplicative in Denominator

< Case 1: SR values for variables in the numerator are always equal to 1.0.  Since they are
independent of the nominal values and ), there is no way to distinguish the relative contributions
to the output.

< Case 3: SR values for variables in the denominator depend exclusively on the ), and are negative
(i.e., inversely related to the output).  Also, the lower the choice for ), the higher the resulting
SR values.  Therefore, SR is somewhat arbitrary, especially for range SR since input variables
may have different plausible minimum and maximum values.

These generalized results highlight a major limitation in the use of the SR approach for obtaining
information from sensitivity analysis.  For simple exposure models in which the relationship between
exposure and risk is linear (e.g., multiplicative), the ratio offers little information regarding the relative
contributions of each input variable to the risk estimate.  In many cases, all of the input variables will
have the same constant, either equal to 1.0 (in the case of a single exposure pathway) or equal to the
relative contributions of the exposure pathways.  For more complex models that combine additive,
multiplicative, and nonlinear relationships between inputs and outputs (e.g., environmental fate and
transport models, pharmacokinetic models), the ratio is likely to be an effective screening tool for
identifying potentially influential input variables and assumptions.

Another difficulty with the SR approach is that it generally requires an assumption that the input
variables are independent.  Two variables may actually be positively correlated (e.g., high values of X1

correspond with high values of X2) or negatively correlated (e.g., high values of X1 correspond with low
values of X2).  If input variables are correlated, holding the value for one variable fixed while allowing
the other to vary may produce misleading results, especially with the range sensitivity ratio approach. 
For example, it may not be realistic to hold body weight fixed at a central tendency while allowing skin
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surface area to vary from the minimum to maximum values.  An improvement over the sensitivity ratio
approach would be to allow correlated input variables to vary simultaneously.

A.2.1.4 SENSITIVITY SCORE

A variation on the sensitivity ratio approach may provide more information from a Tier 1
sensitivity analysis, but it requires that additional information be available for the input variables.  The
sensitivity score is the SR weighted by a normalized measure of the variability in an input variable (U.S.
EPA, 1999).  Examples of normalized measures of variability include the coefficient of variation (i.e.,
standard deviation divided by the mean) and the normalized range (i.e., range divided by the mean), as
given by Equation A-8.

Equation A-8

By normalizing the measure of variability (i.e., dividing by the mean), this method effectively weights the
ratios in a manner that is independent of the units of the input variable, and provides a more robust
method of ranking contributions to the risk estimates than the SR alone.  This approach does require that
the coefficient of variation or range can be calculated for each variable.  Tables A-7 and A-8 present the
results of the sensitivity scores based on the CV applied to the hypothetical example from Section A.2.0.

Table A-7.  Calculation of coefficient of variation (CV = SD / Mean) for the hypothetical example of RME HI given

in Section A.2.0. 

Input Variable , X

in Equation A-21 Probability Distribution2 Mean3 SD3 CV =

SD/Mean

Tap W ater Ingestion Rate, I_w (L/day) lognormal (1.3, 0.75) 1.3 0.75 0.58

Absorption Fraction, Water, AF_w

(unitless)

beta (2.0, 3.0) 0.4 0.2 0.50

Soil Ingestion Rate, I_s (kg/day) uniform (0, 0.13) 0.065 0.038 0.582

Absorption Fraction, Soil, AF_s (unitless) beta (1.22, 4.89) 0.20 0.15 0.75

Exposure Frequency, EF (days/yr) triangular (180, 250, 350) 260 35 0.133

Exposure Duration, ED (years) empirical CD F (see Table

A-2 for parameters)

1.75 3.86 2.21

Body Weight, BW  (kg) lognormal (74.6, 12.2) 74.6 12.2 0.16

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging
time is a function of exposure duration.  RfD is a fixed point estimate.
2Beta (a, b): mean=a / (a+b) and SD = ((a x b) / [(a + b)^2 x (a+b+1)])^0.5)
Uniform (min, max): mean = (min + max)/2 and SD = ((1/12)^0.5) x (max - min) = 0.289 x (max - min)
Triangular (min, mode, max): mean = (min + mode + max)/3 and SD = (1/18) x (min^2 + mode^2 + max^2 - min x max - min
x mode - mode x max)
Empirical CDF ({x}, {p}): mean and SD were estimated by Monte Carlo simulation.
3Mean=arithmetic mean; SD=arithmetic standard deviation
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Table A-8.  Results of the Sensitivity Score (Score) approach applied to the hypothetical example of RME HI given

in Section A.2.0.  Calculations for Sensitivity Ratio (SR) and Coefficient of Variation (CV) are given in Table A-4

and Table A-7, respectively. 

Input Variable , X

in Equation A-21

Nominal 

R M E

value (X1)

CV

(Table A-7)

Local SR 

() =  +  5%)

Range SR 

() =  +  50%)

SR

(Table A-4 )
Score2 SR

(Table A-4 )
Score2

Tap Water Ingestion

Rate, I_w (L/day)

2.0 0.58 0.87 0.50 0.87 0.50

Absorption Fraction,

Water, AF_w

(unitless)

0.50 0.50 0.87 0.44 0.87 0.44

Soil Ingestion Rate,

I_s (kg/day)

0.100 0.58 0.13 0.06 0.13 0.06

Absorption Fraction,

Soil, AF_s (unitless)

0.30 0.75 0.13 0.10 0.13 0.10

Exposure Frequency,

EF (days/yr)

350 0.13 1.00 0.13 1.00 0.13

Exposure Duration,

ED (years)

7 2.21 0.00 0 0.00 0

Body Weight, BW

(kg)

75 0.16 - 0.89 - 0.14 - 0.67 - 0.11

1Only input variables that represent variability are included.  Concentrations are point estimates of uncertainty.  Averaging time is
a function of exposure duration.  RfD is a fixed point estimate.
2Score=SR x CV (see Equation A-8)

The following observations can be made from these results:
< In decreasing order of sensitivity:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Compared with the SR approach alone in which sensitivity can only be expressed for exposure
pathways, the sensitivity score approach provides a measure of sensitivity for exposure variables
within each exposure pathway.

< Although ED has the highest CV, it continues to have no contribution to the HI.

< If Tier 1 sensitivity analysis is based on the sensitivity score, the highest ranked
variables are generally those with the highest CV in the exposure pathway that
contributes the most to the total risk (HI).  For this hypothetical example, I_w and
AF_w are the two highest ranked variables.
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A.2.2 TIER 2 APPROACHES

Approaches for sensitivity analysis in Tier 2 of a PRA utilize the results of Monte Carlo
simulations, which allows multiple input variables to vary simultaneously.  The methods are relatively
simple to perform with spreadsheets or commercial statistical software.  The results are generally easy to
communicate, although the details of the methodology are more complex than Tier 1 approaches.  As
given by Table A-1, goals for the sensitivity analysis in Tier 2 are the same as Tier 1:quantifying the
relative contributions of the exposure pathways, identifying potential nonlinear relationships that may
exist between input variables and the risk estimate, and rank ordering the relative contribution of
exposure variables to variability or uncertainty in the risk estimate.  In addition, since the output is a
distribution, Tier 2 sensitivity analysis methods can also utilize graphical techniques to observe nonlinear
relationships, as well as evaluate potential changes in relative importance of variables and assumptions
for risks in the RME risk range.  Methods are applied to the hypothetical example presented in
Section A.2.0 in order to demonstrate the advantages over the Tier 1 methods.

A.2.2.1 GRAPHICAL TECHNIQUES

Simple scatter plots of the simulated input and output (e.g., risk vs. exposure frequency, or risk
vs. arithmetic mean soil concentration) can be used to qualitatively and quantitatively evaluate influential
variables.  A “tight” best-fit line through the scatter plot, as indicated by the magnitude of the r2, suggests
that a variable may significantly influence the variance in risk.  Hypothetical scatter plots used to identify
sensitive and insensitive variables are shown in Figure A-2.  Another method for visualizing the
relationship between all of the inputs and outputs is to generate a scatterplot matrix (Helsel and Hirsch,
1992).  This graphic shows both histograms and scatter plots for all variables on the same page.

Figure A-3 illustrates scatter plots for the 1-D MCA simulations associated with the example
from Section A.2.0.  Based on the r2 values (i.e., coefficient of determination for simple linear regression
analysis), the relationship between HI and I_w is very strong (r2 = 0.47) while the relationship between
HI and I_s is very weak (r2 < 0.01), suggesting that HI is more sensitive to variability in I_w than I_s.  

 A.2.2.2  CORRELATION COEFFICIENTS

The variance in a risk estimate from a Monte Carlo simulation is due to the variance in the
probability distributions used in the risk equation.  It is commonly said that a Monte Carlo model
propagates sources of variability simultaneously in a risk equation.  Numerous statistical techniques,
known collectively as correlation analysis and regression analysis, can be applied to a linear equation to
estimate the relative change in the output of a Monte Carlo simulation based on changes in the input
variables.  Examples of metrics of sensitivity include the simple correlation coefficient, the rank
correlation coefficient, and a variety of coefficients from multiple regression techniques.  The underlying
assumptions associated with these approaches are discussed in greater detail in Section A.3.  As
explained in Section A.3.3.1, correlation coefficients and regression coefficients are based on different
interpretations of the input variables, but they can be calculated with similar equations.

When the output distribution is compared with the distribution for one input variable at a time,
two of the more common approaches are to calculate the Pearson product moment correlation and the
Spearman rank correlation.  Correlation analysis with one input variable will generally yield reasonable
results when the input variables are sampled independently in a Monte Carlo simulation.  Some statistical
packages offer the correlation coefficient as an index of sensitivity, so it is important to identify which
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coefficient is being calculated.  Crystal Ball® and @Risk can be used to calculate the Spearman rank
correlation, which tends to be more robust when the relationships between inputs and outputs are
nonlinear.  If the relationships are linear, such as with the product quotient models presented in this
appendix, the two metrics of correlation will yield similar rankings of input variables.  Rank correlation
coefficients shown in Crystal Ball® and @Risk are calculated by the standard method provided in most
statistics texts.  Crystal Ball® also indicates that sensitivity can be determined as contribution to variance. 
This is not the relative partial sum of squares techniques discussed in Section A.3.3.2 (Equation A-19). 
Instead, Crystal Ball® calculates the contribution to the variance by squaring the rank correlation
coefficients and normalizing them to 100%.  Many other commonly used commercial software packages
will perform Spearman rank correlation.  Pearson product moment correlations (r) can be calculated in
Microsoft Excel using the trendline feature in a scatter plot chart, or by using the function Correl(X
array, Y array), where X array corresponds with the Monte Carlo simulation of an input variable, and Y
array corresponds with the output of the simulation.

Figure A-4 illustrates results of the correlation analysis for the 1-D MCA simulations associated
with the example from Section A.2.0.  The graphics were generated using Crystal Ball® 2000.  The
results are summarized in Table A-9.  If the model output variable (e.g., HI) and input variable are highly
correlated, it means that the output is sensitive to that input variable.  By squaring the coefficient, the
results can be expressed in terms of the percentage contribution to variance in the output (Figure A-4, top
panel).  To determine if the correlation is positive or negative, the correlation coefficient should not be
squared (Figure A-4, bottom panel).  For risk equations, in general, variables in the numerator of the
equation (ingestion rate, absorption fraction, exposure frequency, etc.) will tend to be positively
correlated with risk, while variables in the denominator (body weight) will tend to be negatively
correlated with risk.  The greater the absolute value of the correlation coefficient, the stronger the
relationship. 

Table A-9.  Results of Tier 2 sensitivity analyses applied to hypothetical example in Section A.2.0: Pearson product

moment correlations and  Spearman rank correlations.1

Exposure Variable

Product Moment

Correlation

Spearman Rank 

Correlation2

r r2 x 100% r r2 x 100%
normalized 

r2 x 100%

Tap W ater Ingestion Rate, I_w (L/day) 0.644 41.4 0.603 36.3 39.5

Absorption Fraction Water, AF_w (unitless) 0.583 34.0 0.666 44.4 48.3

Body Weight, BW  (kg) - 0.216 4.7 - 0.229 5.2 5.7

Exposure Frequency, EF (days/yr) 0.174 3.0 0.167 2.8 3.0

Absorption Fraction Soil, AF_s (unitless) 0.109 1.2 0.149 2.2 2.4

Soil Ingestion Rate, I_s (g/day) 0.061 0.4 0.099 1.0 1.1

Exposure Duration, ED (years) 0.010 0.0 0.010 0.0 0.0

1Monte Carlo simulation using Crystal Ball® 2000, Latin Hypercube sampling, and 5000 iterations.
2Crystal Ball® 2000 output includes Spearman rank correlations, r, and normalized r2 values, calculated by dividing each r2 value
 by the sum of all the r2 values (i.e., 0.920 in this example).  Figure A-4 illustrates the r and normalized r2 values for the
Spearman rank correlation analysis.
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Figure A-2.  Scatterplots of simulated random values from a 1-D MCA of variability.  The output from the

model is a contaminant concentration in soil (C) that corresponds with a prescribed (fixed) level of risk for a

hypothetical population (based on Stern, 1994).  For each iteration of a 1-D MCA simulation, random values

were simultaneously selected  for all model variables and  the corresponding concentration (C) was calculated . 

Inputs were simulated as independent random variables.  Scatterplots of 500 consecutive random values and

estimates of C are shown for two input variables: relative absorption fraction, RAF (top graph); and mass fraction

of dust as soil, F (bottom graph).  There is a moderate, indirect relationship between C and RAF (r2=0.34),

compared with the weak relationship between C and F (r2=0.02), suggesting that the model output (C) is more

sensitive to variability in RAF than F.
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Figure A-3.  Scatterplots of simulated random values from a 1-D MCA of variability for example in Section

A.2.0.  The output from the model is HI.  For each iteration of a 1-D MCA simulation, random values were

simultaneously selected for all model variables and  the corresponding HI was calculated.  Inputs were simulated

as independent random variables.  Scatterplots of 250 consecutive random values and estimates of HI are shown

for two input variables: soil ingestion rate, I_s (top graph); and tap water ingestion ra te, I_w (bottom graph). 

There is a negligible relationship between HI and I_s (r2 < 0.01), compared with the strong relationship between

HI and I_w (r2=0.47), suggesting that the model output (HI) is more  sensitive to  variability in I_w than I_s.  Best-

fit lines were generated with the Simple Linear Regression in Microsoft Excel’s trendline option for scatterplots;

r2 values represent the coefficient of determination (see Section A.3).
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Figure A-4.  Top panel - bar graph showing the r2 values (square of Spearman rank correlation coefficient), a

metric for the dependence of HI on exposure factors based on 1-D M CA for variability.  Bottom panel - bar graph,

sometimes referred to as “tornado plot”, showing rank correlation coefficient.  This graph is effective for showing

both the relative magnitude and direction of influence (positive or negative) for each variable.  Abbreviations for

input variables are given in Table A-4.  In this example, the variable with the greatest effect on HI is the absorption

fraction in water (AF_w), followed by the water ingestion rate (I_w).  Concentration does not influence variability

because, in this example, long-term average concentration is characterized by a point estimate (i.e., 95% UCL),

rather than a probability distribution.  Exposure duration does not influence variability because variability in ED is

expressed  in both the numerator (ED) and denominator (AT=ED x 365 for noncarcinogenic effects), and cancels

out.  Output was generated with Crystal Ball®, which calculates the contribution to variance by squaring the rank

correlation coefficient and normalizing to 100%.
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In this example, seven exposure variables are used to characterize variability in HI.  The
remaining variables in the risk equation (i.e., concentration terms, and RfD) are characterized by point
estimates.  Because point estimates do not vary in a Monte Carlo simulation, they do not contribute to the
variance in the output.  This result does not mean that concentration is an unimportant variable in the risk
assessment.  Concentration may still contribute greatly to the uncertainty in the risk estimate.  A
sensitivity analysis of parameter uncertainty in a risk equation can be explored using iterative
simulations, such as with 2-D MCA.

Results of the Pearson correlation and Spearman rank correlation give similar rankings of the
input variables, with absorption fraction of water (AF_w) and tap water ingestion rate (I_w) being the
two dominant exposure variables.  Pearson correlations suggest that I_w is the most sensitive variable
(r =0.644), whereas the highest Spearman rank correlation is for AF_w (r = 0.603).  This may reflect the
fact that I_w is characterized by an untruncated lognormal distribution, whereas AF_w is bounded
between 0 and 1.0.  The effect on the correlations of the occasional high-end value for I_w generated
from random sampling of the lognormal distribution will tend to be expressed by Pearson correlations,
but muted by the Spearman rank correlations.

A comparison of the Tier 1 and Tier 2 results is given below:

< Tier 1, Sensitivity Ratios:

- Local SR () = 5%) rankings: EF > BW > I_w = AF_w >  I_s = AF_s > ED 

- Range SR () = 50%) rankings: EF > I_w = AF_w > BW > I_s = AF_s > ED

< Tier 1, Sensitivity Scores:

- Score based on local SR () = 5%): I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Score based on range SR () = 50%): I_w > AF_w > EF > BW > AF_s > IR_s > ED

< Tier 2, Correlation Coefficients:

- Pearson: I_w > AF_w > BW > EF > AF_s > IR_s > ED

- Spearman Rank: AF_w > I_w > EF > BW > AF_s > IR_s > ED

The Tier 1 sensitivity scores and Tier 2 correlation coefficients yield similar results, suggesting
that, if sufficient information is available to estimate the coefficient of variation in the input variables, a
Tier 1 analysis can help to focus efforts on the variables that contribute most to the variance in risk.  By
contrast, the Tier 1 sensitivity ratio approach suggested that EF was the most influential variable, when in
fact it contributes less than 5% to the variance in the HI.  These results suggest that Tier 1 sensitivity
ratios are best applied to identify dominant exposure pathways, rather than dominant exposure variables
in the risk equation.
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Equation A-9

Equation A-10

A.2.2.3 FOCUSING ON THE RME RANGE OF THE RISK DISTRIBUTION

Monte Carlo methods can also be used to determine the sensitivity over a subset of the output
distribution, such as the RME range (i.e., 90th to 99.9th percentiles).  For some exposure models, the
relative contribution of exposure variables may be different for the high-end exposed individuals than for
the entire range of exposures.  The general strategy for exploring sensitivity over subsets of risk estimates
is to first sort the distribution of simulated output values in ascending (or descending) order, and then
apply a sensitivity analysis to the subset of interest (e.g., > 90th percentile).  For the hypothetical example
presented in this appendix, there was no difference in the relative rankings of inputs in the RME range.

A.2.2.4 INSPECTION

With Monte Carlo analysis, the probability distributions assumed for the various input variables
are used to generate a sample of a large number of points.  Statistical methods are applied to this sample
to evaluate the influence of the inputs on the model output.  A number of different “indices” of
sensitivity can be derived from the simulated sample to quantify the influence of the inputs and identify
the key contributors.  Most of these are based on an assumption that the model output Y varies in a
monotonic, linear fashion with respect to various input variables (X1, X2, etc.).  For example, an estimate
of average daily intake (mg/kg-day) from multiple exposure pathways is linear with respect to the intake
from each pathway.  Since most risk models are linear with respect to the input variables, the output
distribution (particularly its upper percentiles) tends to be dictated by the input variables with the largest
coefficient of variation (CV), or the ratio of the standard deviation to the mean.  For example, Equation
A-9 represents a simple expression for intake rate as a function of random variables X1 and X2 :  

where X1 and X2 may represent dietary intake associated with prey species 1 and 2, respectively.  If the
same probability distribution was used to characterize X1 and X2, such as a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 50 (i.e., CV=50/100=0.5), each variable would
contribute equally to variance in Y.  If, however, X2 was characterized by a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 200 (i.e., CV=200/100=2.0), we would expect Y to
be more sensitive to X2.  That is, X2 would be a greater contributor to variance in Y.  

While the coefficient of variation may be a useful screening tool to develop a sense of the
relative contributions of the different input variables, a common exception is the case when X1 and X2

have different scales.  For example, Equation A-10 is an extension of Equation A-9:

where a1 and a2 are constants that may represent the algebraic combination of point estimates for other
exposure variables.  If the means of X1 and X2 are equal, but a1 >> a2, then X1 would tend to be the
dominant contributor to variance, regardless of the CV for X2.  This concept was demonstrated by the
sensitivity score calculations given in Table A-8.  Water ingestion rate (I_w) and soil ingestion rate (I_s)
had the same CV (0.58), but I_w was the dominant variable because tap water ingestion contributed
approximately 90% to the HI.
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Equation A-11

The most influential random variables generally have the highest degrees of skewness or are
related to the output according to a power function (Cullen and Frey, 1999).  For example, Equation A-11
presents an extension of Equation A-10 in which there is a power relationship between X2 and Y.  In this
example, assume Y represents the total dietary intake rate of cadmium for muskrats, X1 and X2 represent
the dietary intake rate associated with prey species 1 and 2, respectively, a1 and a2 represent additional
point estimates in the equation, and 2 is the power exponent.  In general, for 2 > 1, the total dietary
intake rate (Y) will be more sensitive to the intake rate associated with species 2 (X2) than species 1. 
Assume (hypothetically) that the power relationship stems from the fact that there is a direct relationship
between availability of prey species X2 and chemical body burdens of prey species X2 because
individuals that are more accessible to the muskrat also happen to frequent areas of the site with higher
concentrations.

 A.3.0 ADVANCED CONCEPTS IN SENSITIVITY ANALYSIS

This section provides additional information on the underlying principles of sensitivity analysis,
although it is not a comprehensive summary and is not intended to substitute for the numerous statistical
texts and journal articles on sensitivity analysis.  Section A.3.1 begins with a general framework for
relating model output to model input.  Section A.3.2 explains the sensitivity ratio approach and highlights
some of its limitations.  Section A.3.3 reviews some of the metrics reported by the commercial software
that report results of sensitivity analysis following Monte Carlo simulations (e.g., Crystal Ball®, @Risk). 
While statistical software for MCA provides convenient metrics for quantifying and ranking these
sources, it is strongly recommended that risk assessors and risk managers develop an understanding of
the underlying principles associated with these metrics.  

A.3.1 RELATING THE CHANGE IN RISK TO THE CHANGE IN INPUT VARIABLE X

For purposes of discussion, let Y denote a model output (e.g., risk) and suppose that it depends on
the input variable X.  In general, a risk assessment model may use any number of inputs; however, for
purposes of illustrating concepts, it is convenient to restrict this discussion to one variable.  The model
relates the output Y to values of X (i.e., x0, x1, sss, xn) based on the function expressed as Y=F(x).  The
sensitivity of Y to X can be interpreted as the slope of the tangent to the response surface F(X) at any
point xi.  This two-dimensional surface can be a simple straight line, or it may be very complex with
changing slopes as shown in Figure A-5a.  The sensitivity, therefore, may depend on both the value of X
and the amount of the change )x about that point.  This concept can be extended to two input variables,
X1 and X2, where the response is characterized by a three-dimensional surface.  The shape may be a
simple plane (Figure A-5c) or it may be very complex with many “hills” and “valleys” depending on the
defining function F(X1, X2).  In a typical risk assessment with ten or more variables, the surface can be
very complex, but the shape is likely to be dominated by a small subset of the input variables.

A sensitivity analysis based on a relatively small deviation about the point may be referred to as a
local sensitivity analysis, while a large deviation may be referred to as range sensitivity analysis.  In
either case, the objective is to evaluate the sensitivity at some nominal point (X1*, X2*) such as the point
defined by the mean or median of X1 and X2.  At any point, the sensitivity of the model output, Y* =
F(X1*, X2*), to one of the inputs (X1 or X2), is represented by the rate of change in Y per unit change in X. 
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Figure A-5a.  Hypothetical 2-D response surface for Y given one input

variable: Y=F(X).  The sensitivity of Y with respect to X  is calculated as the

slope at a specific point on the surface (x0, x1), or the partial derivative,

MY/MX i.

This is the slope of the surface at that nominal point in the direction of X and is expressed as MY/MXi, the
partial derivative of Y with respect to X.

If the function F(X1, X2) is known explicitly, it may be possible to determine the partial
derivatives analytically.  This is not a requirement, however, because an estimate can be obtained by
incrementing Xi by a small amount, )Xi, while keeping the other inputs fixed and reevaluating the model
output Y.  The resulting change in Y divided by )Xi will approximate MY/MXi at the nominal point.  In
practice, analytical solutions can be approximated using Monte Carlo techniques.  This information is
presented to highlight the fundamental concepts of sensitivity analysis.  The partial derivative, per se,
would typically not be one of the methods of sensitivity analysis used in a PRA.  However, all of the
approaches that are presented in this appendix are variations on this concept.

One drawback to using the partial derivative to quantify the influence of Xi is that the partial
derivative is influenced by the units of measurement of Xi.  For example, if the measurement scale for Xi

is changed from grams to milligrams, the partial derivative MY/MXi will change by a factor of 1,000. 
Therefore, it is necessary to normalize the partial derivative to remove the effects of units (see
Section A.3.2).

If the relationship between Y and all of the inputs is linear, then the response surface is a flat
plane and each of the partial derivatives at each point, (Xi, Y), will remain constant regardless of where
the point is in the surface (Figure A-5b).  In this case, it is a simple matter to determine the relative
influence that the various inputs have on the model output.  When the relationship is nonlinear, however,
the situation is more complex
because the influence of a
particular input may vary
depending on the value of that
input.
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Figure A-5b.  Hypothetical 3-D response surface for Y given two input variables: Y = f(X1, X2).  The sensitivity

of Y with respect to X i is calculated as the slope at a specific point on the surface, or the partial derivative,

MY/MX i.

Figure A-5c.  Hypothetical 3-D response surface when Y is a linear function of two input variables: Y=f(X1,

X2).  The slope (i.e., the partial derivative, MY/MX i) is constant for any point (X i, Y) on the surface in the direction

of X i.  In this case, MY/MX1=5 while MY/MX2=2.
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A.3.2 NORMALIZED PARTIAL DERIVATIVE

Classical sensitivity analysis methods use estimates of the partial derivatives of the model output
with respect to each variable.  For the purpose of evaluating the relative influence of the various input
variables on the model output at a single point, the normalized partial derivative provides a useful
index.

If the input variables are all discrete and take on a small number of values, then it is possible to
evaluate the influence of the various input variables at each of the points defined by considering all
possible combinations of the inputs.  Then the influence can be evaluated for each input by computing
normalized partial derivatives at each point.  This approach is limited to situations where the number of
inputs as well as the number of possible values for each input is relatively small; otherwise, the number
of combinations to be evaluated will be unmanageable.  Furthermore, when evaluating the influence at
different points on the input-output surface simultaneously, it is important to take into account the
probability associated with each of those points.  For example, the fact that a particular input has a large
influence on the model output at a particular point would be discounted if the probability associated with
that particular point is very low. 

A similar approach may be used to analyze inputs that are continuous variables if a few points
representing the range of values are selected.  For example, low, medium (or nominal), and high values
may be selected for each of the continuous input variables and then the relative influence of each of the
input variables can be computed as in the case of discrete inputs.  One limitation of this approach,
however, is that the continuous nature of the inputs makes it impossible to calculate an exact probability
for each of the points.  Generally, in a PRA, many if not all of the inputs will be random variables
described by probability distributions and it will be necessary to quantify the influence of each input, Xi,
over the entire range of Xi. 
 

An estimate of the partial derivative can be obtained by incrementing Xi by a small amount, say
)Xi while keeping the other inputs fixed and reevaluating the model output Y.  The resulting change in Y
divided by )Xi will approximate MY/MXi at the nominal point. 

As previously noted, one complication to using the partial derivative to quantify the influence of
Xi is that the partial derivative is influenced by the units of measurement of Xi.  One way this is
accomplished is to divide the partial derivative by the ratio of the nominal point estimates, Y* / Xi* (or
equivalently multiply by Xi* / Y*).  An approximation of the normalized partial derivative is given by
Equation A-12.
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EXHIBIT A-5

SIMPLIFYING ASSUMPTIONS IN 

REGRESSION ANA LYS IS

C Y is a linear function of the unknown

coefficients ($i)

C Successive values of Y are uncorrelated 

C Variance of Y is constant for all values of

inputs (X i)

Equation A-12

This is the same as the equation for calculating sensitivity ratios (Section A.2.1.3), or elasticity
(see Equation A-5).  As with the SR approach, the normalized partial derived can be weighted by
characteristics of the input variable (Section A.2.1.4).  One approach is to divide by the ratio of standard
deviations (FY/ FX), where FY is the standard deviation of Y and FX is the standard deviation of X.  This
method requires that the standard deviations be known, or that a suitable estimate can be obtained.

As previously noted, if the relationship between Y and all of the inputs is nonlinear, the influence
of a particular input may vary depending on the value of that input.  One approach to this problem is to
consider a range of values for the input and to examine the influence over that range.  If the input is
considered to be a random variable following some specified probability distribution, then it may be
desirable to look at the influence that the random input has on the model output across the distribution of
input values.  This can be accomplished with a Monte Carlo approach.  Another technique that addresses
nonlinearities is to calculate contributions to variance using input variables that are transformed (e.g.,
lognormal or power transformation).

A.3.3 REGRESSION ANALYSIS: R2, PEARSON R, AND PARTIAL CORRELATION COEFFICIENTS 

In order to understand R2, it is necessary to first understand simple and multiple linear regression. 
In regression analysis, we are interested in obtaining an equation that relates a dependent variable (Y) to
one or more independent variables (X):

Equation A-13

where $0 and $1 are regression coefficients, and g is called a random error.  Equation A-13 is the general
equation for a simple linear regression, because there is only one Y and one X variable, and their

relationship can be described by a line with intercept $0 and slope $1.  

Note that linear regression refers to the linear relationship between parameters ($0, $1), not X and

Y.  Thus, the equation   is

considered linear.  Multiple linear regression
involves more than one X related to one Y

, while multivariate

regression involves more than one Y to more than
one X.

The random error, g, represents the
difference between an observed Y value (calculated
from the observed input variables), and a Y value
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predicted by the regression line (í).  It is also called the residual (i.e., g=y–í).  The random error takes
into account all unpredictable and unknown factors that are not included in the model.  Exhibit A-5 gives
some of the simplifying assumptions that apply to regression analysis.  Assumptions about g are that the
random error has mean = 0 and constant variance, and is uncorrelated among observations.  One method
of finding the best regression line is to minimize the residual sum of squares (i.e., least-squares method),
also called the sum of squares due to error (SSE).

In terms of sensitivity analysis, we are interested in how much of the variation in Y can be
explained by the variation in X, and how much is unexplained (due to random error).  If a scatter plot of
paired observations (x, y) shows that our regression line intersects all of the observations exactly, then all
of the variation in Y is explained by X.  Another way of stating this is that the difference between the

mean output ( ) and an observed y (yi), or (yi - ), is equal to the difference between the mean output

and a predicted y or ( ). 

In general, the total deviation of yi from  is equal to the sum of the deviation due to the

regression line plus the deviation due to random error:

Equation A-14

Thus, the total sum of squares (SST) equals the sum of squares due to error (SSE) plus the sum
of squares due to regression (SSR). 

A.3.3.1 CALCU LATIO NS OF R2 AND ADJUSTED R2

The R2 term is a measure of how well the regression line explains the variation in Y, or:

Equation A-15

where R2 is called the coefficient of multiple determination and R is called the multiple correlation
coefficient.  If R2=0.90 for a certain linear model, we could conclude that the input variables (X1,
X2,...Xk) explain 90% of the variation in the output variable (Y).  R2 reduces to the coefficient of
determination r2 for simple linear regression when one independent variable (X) is in the regression
model.  The sample correlation coefficient, r, is a measure of the association between X and Y, and
calculated by Equation A-16.  It is also referred to as the Pearson product moment correlation coefficient.
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Equation A-16

In addition, r is an estimate of the unknown population parameter, D, defined by Equation A-17:

Equation A-17

where FX and FY denote the population standard deviations of the random variables X and Y, and where
FXY is called the covariance between X and Y.  The covariance FXY is a population parameter describing
the average amount that two variables “covary”.  Thus, another way of thinking about a correlation
coefficient (R) is that it reflects the ratio of the covariance between two variables divided by the product
of their respective standard deviations; and the value always lies between -1 and +1.  @Risk and Crystal
Ball® provide both the R2 for the entire model, as well as the correlation coefficients for each input
variable (or regressor).  The higher the value of Ri for Xi, the more sensitive the output variable is to that
input variable. 

Although the calculations are the same, there is a subtle conceptual difference between the
coefficient of determination (r2) from regression, and the square of the correlation coefficient.  When
evaluating two variables (X, Y), the key is whether X is interpreted as a “fixed” quantity (i.e., an
explanatory variable), or a random variable just like Y.  In regression analysis, r2 measures how well the
regression line explains the variation in Y given a particular value for X (Equation A-15).  Correlation
requires that X be considered a random variable, typically having a bivariate normal distribution with Y
(see Appendix B). 

One artifact of regression analysis is that R2 increases as you add more and more input variables
to your model; however, the increased fit of the model due to one or more of the input variables may be
insignificant.  Sometimes an adjusted R2 is calculated to take into account the number of input variables
(called regressors) in the model (k) as well as the number of observations in the data set (n):

Equation A-18

While R2 gives the proportion of the total variation of Y that is explained,  (Equation A-18) takes

into account the degrees of freedom (df), and gives the proportion of the total variance of Y that is
explained (variance = variation /df); or stated simply,  is the R2 corrected for df, where df is

described by [1 - k/(n-1)].

C If the relationship between an input variable and an output variable is strong, but nonlinear, the R2

statistic will be misleadingly low.
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C If the means of the sampling data are used rather than the individual observations for each variable,
R2 will be misleadingly high.  This is because taking the mean of a sample reduces the fraction of
the total variation due to random variation (see discussion of random error above).  This is an
important consideration when trying to interpret the results of regression analyses that incorporate
data averaged over different spatial scales (e.g., regression of PbB on soil lead concentrations taken
at the city block level may give an inflated R2 value if the sampling data are averaged over a larger
spatial scale, such as the census tract level).

A multiple regression analysis can also be performed to estimate the regression coefficients (see
Appendix A.3.3).  Each coefficient essentially represents an “average” value of the partial derivative
across the entire distribution of the input.  The regression coefficient, like the partial derivative, depends
on the units of measurement so, as in the case of the partial derivative, it must be normalized.  This can
be accomplished by multiplying the regression coefficient by the ratio of estimated standard deviations
sy/sx.

A convenient way to carry out a sensitivity analysis is to perform a stepwise regression analysis. 
Some statistical software packages (e.g., SAS, SPSS) offer a variety of different approaches for this;
however, in general, they can be classified into two general categories: forward selection and backward
elimination.  In the forward selection, the inputs are added to the model one by one in the order of their
contribution.  In the backward elimination, all of the inputs are used in the model initially and then they
are dropped one by one, eliminating the least important input at each step.  A true stepwise procedure is a
variation on the forward selection approach where an input can drop out again once it has been selected
into the model if at some point other inputs enter the model that account for the same information.

A.3.3.2 RELATIVE PARTIAL SUM OF SQUARES (RPSS)

The relative partial sum of squares (RPSS) measures the sensitivity of the model output to
each of the input variables by partitioning the variance in the output attributable to each variable using
multiple regression techniques (Rose et al., 1991).  The RPSS is presented as a percentage reflecting the
proportion of influence a given variable has on risk.  The results of RPSS are intuitive and generally easy
to understand.

Briefly, the RPSS represents the percentage of the total sum of squares attributable to each of the
variables.  To calculate RPSS for variable Vi, the difference between the regression sum of squares (RSS)
for the full model and the regression sum of squares for the model with Vi missing (RSS-i) is divided by
the total sum of squares (TSS) and expressed as a percentage:

Equation A-19

This procedure can be thought of as analogous to least squares linear regression, but performed
in the n-dimensional parameter space of the risk equation.  Since this approach depends on the adequacy
of the linear regression model between the output variable (e.g., risk) and all the variables, an additional
diagnostic is to check how close R2 is to 1.0.  For equations with more than three parameters (such as
those used in Superfund risk assessments), the computational overhead of this process is large and
requires specific computer programs.  The software program Crystal Ball® does not perform this
calculation, but it can be determined with most standard statistical software packages that perform
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multiple regression. @Risk performs a calculation similar to this called multivariate stepwise regression
that yields correlation coefficients in lieu of percent contributions to output variance.

A.3.3.3 SPEARMAN’S RANK CORRELATION COEFFICIENT (RHO)

The validity of using indices such as regression coefficients, correlation coefficients, and partial
correlation coefficients depends on the assumptions of the underlying linear model being met.  If there is
any doubt that a data set satisfies the model assumptions, a nonparametric measure of correlation based
on the rank orders of the inputs and associated outputs can be used.  The Spearman Rank correlation
coefficient is a nonparametric statistic; it measures an association between variables that are either count
data or data measured on an ordinal scale, as opposed to data measured on an interval or ratio scale.  An
example of an ordinal scale would be the ranking of sites based on their relative mean soil
concentrations.  For example, if there are four categories of soil contaminant concentrations, sites with
the highest concentrations may receive a rank of 1 while sites with lowest concentrations may receive a
rank of 4.  Ordinal scales indicate relative positions in an ordered series, not “how much” of a difference
exists between successive positions on a scale. 

To calculate the Spearman rank correlation coefficient, assign a rank to each of the input
variables (Xj) and output variables (Yk).  For each ranked pair (Xj, Yk), calculate the difference, d, between
the ranks.  For example, if the first observation for variable X has a ranking of 5 (relative to all of the
observations of X), and the corresponding value of Y has a ranking of 3 (relative to all of the observations
of Y), the difference (d) is equal to 5–3=2.  Spearman rho (rs) is calculated as:

Equation A-20

Hence (-1 # rs # 1.0), and rs=-1 describes a perfect indirect or negative relationship between
ranks in the sense that if an X element increases, the corresponding Y element decreases.  Similarly, rs=0
suggests that there is no relationship between X and Y.

The Pearson product moment correlation coefficient is equal to the Spearman rank correlation
coefficient when interval/ratio values of the measured observations (X, Y) are replaced with their
respective ranks.
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